Synthesis and Bioactivity Evaluation of N-Arylsulfonylindole Analogs Bearing a Rhodanine Moiety as Antibacterial Agents.

نویسندگان

  • Ming-Xia Song
  • Song-Hui Li
  • Jiao-Yang Peng
  • Ting-Ting Guo
  • Wen-Hui Xu
  • Shao-Feng Xiong
  • Xian-Qing Deng
چکیده

Due to the rapidly growing bacterial resistance to antibiotics and the scarcity of novel agents under development, bacterial infections are still a pressing global problem, making new types of antibacterial agents, which are effective both alone and in combination with traditional antibiotics, urgently needed. In this paper, seven series of N-arylsulfonylindole analogs 5-11 bearing rhodanine moieties were synthesized, characterized, and evaluated for antibacterial activity. According to the in vitro antimicrobial results, half of the synthesized compounds showed potent inhibition against four Gram-positive bacteria, with MIC values in the range of 0.5-8 µg/mL. For multidrug-resistant strains, compounds 6a and 6c were the most potent, with MIC values of 0.5 µg/mL, having comparable activity to gatifloxacin, moxiflocaxin and norfloxacin and being 128-fold more potent than oxacillin (MIC = 64 µg/mL) and 64-fold more active than penicillin (MIC = 32 µg/mL) against Staphylococcus aureusATCC 43300.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Green Chemical Synthesis and Biological Evaluation of Novel N-substituted Rhodanine Derivatives as Potential Antifungal Agents

Background and purpose: In medicinal chemistry, molecules containing rhodanine(2-thiazolidine-4-one) ring as a magic multifunctional privileged structural and functional scaffold show a broad range of potent pharmacological properties containing anti-microbial, antiviral, anti-diabetic, and anti-convulsant effects. Evidence suggests that the activity of the rhodanine derivative correlates with ...

متن کامل

Synthesis, characterization and polymerization of a novel acrylate monomer containing both 4H-pyran-4-one and 1,2,3-triazole moiety and evaluation of their antibacterial activity

A novel acrylate monomer containing 4H-pyran-4-one and 1,2,3-triazole ring, {1-[4-(4-oxo-6-phenyl-4H-pyran-2-yl)benzyl]-1,2,3-triazol-4-yl}methyl acrylate was synthesized by the reaction of 2-{4-[(4-(hydroxymethyl)-1,2,3-triazol-1-yl)methyl]phenyl}-6-phenyl-4H-pyran-4-one with acryloyl chloride in the presence of triethylamine. The structure of the acrylate monomer was established on the basis ...

متن کامل

2-(4-Fluorophenyl)-N-phenylacetamide Derivatives as Anticancer Agents: Synthesis and In-vitro Cytotoxicity Evaluation

Cancer is a major global problem and is the second leading cause of mortality in the developed countries.Resistance to current chemotherapeutics and high incidence of adverse effects are the two principal reasons for developing new anticancer agents. Phenylacetamide derivatives can act as potential anticancer agents. Synthesis and screening of 2-(4-Fluorophenyl)-N-phenylacetamide derivatives in...

متن کامل

Synthesis of Some Benzofuran Derivatives Containing Pyrimidine Moiety as Potent Antimicrobial Agents

In this investigation, the synthesis of 2-substituted pyrimidines by the reaction of benzofuranchalcones (3a-d) with urea, thiourea and guanidine hydrochloride was reported. The structuresof title compounds (4a-d), (5a-d) and (6a-d) were established on the basis of analyticaland spectral data. The synthesized compounds were screened for antimicrobial activityand molecular docking studies. Some ...

متن کامل

Synthesis and Bioactivity Evaluation of Novel 2-Salicyloylbenzofurans as Antibacterial Agents.

In order to discover new antibacterial agents, series of 2-salicyloylbenzofuran derivatives were designed, synthesized and evaluated for their antibacterial activities against three Gram-(+) strains (methicillin-sensitive Staphylococcus aureus (MSSA) ATCC 29213, methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, and Streptococcus faecalis (S. faecalis) ATCC 29212) and one Gram-(-) s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2017